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Abstract

Several AI-aided screening tools have emerged to tackle the ever-expanding

body of literature. These tools employ active learning, where algorithms sort

abstracts based on human feedback. However, researchers using these tools

face a crucial dilemma: When should they stop screening without knowing the

proportion of relevant studies? Although numerous stopping rules have been

proposed to guide users in this decision, they have yet to undergo comprehen-

sive evaluation. In this study, we evaluated the performance of three stopping

rules: the knee method, a data-driven heuristic, and a prevalence estimation

technique. We measured performance via sensitivity, specificity, and screening

cost and explored the influence of the prevalence of relevant studies and the

choice of the learning algorithm. We curated a dataset of abstract collections

from meta-analyses across five psychological research domains. Our findings

revealed performance differences between stopping rules regarding all perfor-

mance measures and variations in the performance of stopping rules across

different prevalence ratios. Moreover, despite the relatively minor impact of

the learning algorithm, we found that specific combinations of stopping rules

and learning algorithms were most effective for certain prevalence ratios of rel-

evant abstracts. Based on these results, we derived practical recommendations

for users of AI-aided screening tools. Furthermore, we discuss possible impli-

cations and offer suggestions for future research.
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Highlights

What is already known?
• AI-aided screening tools hold the potential to expedite literature searches in

systematic reviews and meta-analyses. These tools employ active learning to
prioritize abstracts based on their expected relevance, drawing from previ-
ously categorized abstracts.
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• A substantial challenge for users of AI-aided screening tools lies in deter-
mining a reliable stopping point for terminating the screening process.

• While several stopping rules have been devised, their effectiveness remains
inadequately evaluated within the context of psychological literature.

• Typically, these rules are evaluated without controlling for features of the
screening tools (i.e., type of learning algorithm) or the attributes of abstract
collections (i.e., prevalence of relevant abstracts).

• The performance of stopping rules is often measured using metrics that are
unfamiliar to psychologists.

What is new?
• The performance of stopping rules (including the knee method, data-driven

heuristic, and prevalence estimation) is measured in terms of sensitivity,
specificity, and screening cost (percentage of records needed to be screened).

• The performance of stopping rules depends on the prevalence of relevant
abstracts.

• Specific combinations of stopping rules and learning algorithms outperform
others.

Potential impact for Research Synthesis Methods readers?
• Receive guidance on choosing stopping rules and learning algorithms tai-

lored to specific prevalence rates of relevant abstracts.
• Researchers receive recommendations regarding aspects of AI-aided

screening.
• Researchers can access code that can be utilized stopping rules in R.

1 | INTRODUCTION

The evolving scientific knowledge results in an expand-
ing body of research findings. Synthesizing evidence via
systematic reviews and meta-analyses in a particular
research domain consequently demands a greater invest-
ment of time and effort.1 Moreover, these syntheses typi-
cally necessitate the collaborative efforts of multiple
researchers.2 Especially the literature search and screen-
ing of abstracts constitute a substantial portion of the
workload.3,4 Recommendations, such as (a) giving prefer-
ence to broadly defined search terms over narrowly
focused ones, (b) systematically expanding the search by
examining the references cited within the identified
articles (backward snowballing), and (c) searching for
articles that cited the identified articles (forward snow-
balling), underscore the substantial effort required to
identify relevant articles for research syntheses.5–7 Many
tools have been developed to assist researchers in con-
ducting research synthesis for various tasks involved in
the process.8 Among these, some tools enhance the
search process by automating forward and backward
search techniques.9,10 While this automation might
improve the quality of research syntheses by identifying
more potentially relevant articles, it also requires

additional time and resources to screen the abstracts of
these articles for eligibility. For instance, Wallace et al.11

noted that screening an abstract typically requires about
30 s. Consequently, screening 5000 abstracts demands
approximately 40 h of skilled labor, and identifying an
additional 1000 potentially relevant abstracts would
extend the screening time by another 8 h. However, simi-
lar to the literature search, the screening of abstracts can
be accelerated by using modern, innovative AI-aided
screening (AI-AS) tools.12–14 These tools primarily utilize
machine learning techniques to reorder abstracts based
on their predicted relevance to the researcher.8,15 This
altered order should enable researchers to identify all rel-
evant abstracts, and therefore articles, before screening
all of them. Thus, the time required for manual screening
could diminish while maintaining the number of identi-
fied relevant articles. Notably, identifying 95% of the rele-
vant literature using AI-assisted screening (AI-AS) is
typically considered sufficient performance. This is based
on findings that conducting meta-analyses without these
last-to-find studies did not impact the main findings.16

Moreover, traditional random screening can also result in
the misclassification of around 10% of the abstracts due
to factors such as fatigue.17 While fatigue can also affect
the quality of any AI-AS, the smaller number of items
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requiring screening could reduce this risk.8,18 In addition,
aiming for 100% rather than 95% of relevant abstracts can
increase the screening time in AI-AS (see Reference 19),
thereby reducing its benefits and increasing the risk of
fatigue.

In a recent review, Burgard and Bittermann15 sum-
marized and compared the effectiveness of 15 tools sup-
porting the screening of abstracts utilizing machine
learning algorithms to order abstracts based on their pre-
dicted probability of being relevant. They observed that
these tools helped to identify at least 95% of relevant arti-
cles after screening a median of approximately 40% of the
abstracts. Moreover, in their study, 25% of the summa-
rized evaluation studies reported screening up to 14% of
the abstracts was sufficient to achieve this identification
rate. In comparison, another 25% reported that at least
70% needed to be screened to identify a minimum of 95%
of the relevant literature. This considerable performance
variation was observed between different AI-AS tools and
within the same tool. The authors concluded that reasons
for such heterogeneous findings include differences in
data (i.e., abstracts from different literature searches,
hereafter referred to as abstract collections) and the pre-
diction models employed.15 Thus, performance seems to
depend on a specific model-data combination, limiting
the generalizability of the reported screening savings.
Consequently, despite their potential, users of AI-AS
tools face difficulties in determining how many abstracts
need to be screened to identify at least 95% of the relevant
articles.

To tackle the challenge of determining a reliable stop-
ping point when screening abstracts utilizing AI-AS tools,
a variety of stopping rules with different levels of com-
plexity have been developed.11,20–25 Unfortunately, the
performance of most stopping rules in AI-AS remains
uncertain, and the existing literature lacks a comprehen-
sive evaluation of factors that could impact their perfor-
mance.15 Moreover, the generalizability of existing
findings to different research domains is limited, as cur-
rent evaluation studies primarily rely on literature
reviews from clinical, educational, or nonpsychological-
related research domains.11,21,23–26 Given these limita-
tions, additional research is needed to develop reliable
stopping rules and to derive suggestions for their imple-
mentation across various research contexts. Without suf-
ficient performance (i.e., identifying at least 95% of the
relevant literature) of these rules, users may remain
uncertain about the number of potentially missed rele-
vant articles. Missing relevant articles, in turn, might
introduce bias into the results of their quantitative syn-
theses. Consequently, it is crucial to advance the under-
standing and development of robust stopping rules that
identify at least 95% of the relevant literature.

Therefore, the present study's primary objective is to
systematically evaluate factors that may influence the
performance of stopping rules in AI-AS. Specifically, we
focus on three aspects: the generalizability of previous
findings to psychological research domains, the influence
of the prevalence of relevant articles, and the influence of
the learning algorithm on the performance of stopping
rules. To achieve this, we conducted a hybrid simulation
study that leveraged real data to simulate the AI-AS pro-
cess. First, we manipulated the prevalence of relevant
articles in abstract collections sourced from diverse
psychological research domains. Second, using the open-
source AI-AS software “ASReview,”19 we applied differ-
ent learning algorithms to each manipulated abstract col-
lection to simulate AI-AS. We assessed the performance
of three different stopping rules across these conditions: a
prevalence estimation technique6 that estimated the
number of relevant abstracts, a heuristic stopping rule24

that stopped after n consecutive irrelevant abstracts, and
the knee method22 a statistical stopping procedure. Per-
formance was evaluated in terms of sensitivity (i.e., the
percentage of relevant abstracts among all screened
abstracts), specificity (i.e., the percentage of irrelevant
articles among all unscreened articles), and cost (i.e., the
percentage of articles screened until the stopping rule is
met). Whereas sensitivity and specificity assessed the
accuracy of the stopping rule, the cost measure described
the efficiency of AI-AS compared to traditional screening.
By combining these measures, researchers can achieve
an optimal balance between accuracy and efficiency in
the AI-AS process.

2 | THEORETICAL BACKGROUND

Screening abstracts and titles is a key step in any system-
atic review.5 However, it is also one of the most time-
consuming components and typically requires the work
of several researchers.3,4 Numerous scientists have
already advocated for enhancing the efficiency of this
process.3,12–14 Among the solutions discussed in the liter-
ature, AI-AS is receiving increasing attention.15

2.1 | AI-aided screening

In their review, Burgard and Bittermann15 identified
15 AI-AS tools that aim to speed up the screening of
abstracts and titles. These tools employ various
approaches to achieve this objective, with 11 of them uti-
lizing active learning. In the context of AI-AS, active
learning describes a process in which a machine learning
algorithm orders abstracts on the basis of a relevance
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estimate and then refines this estimate through feedback
from a human screener. This iterative, semiautomated
approach allows the algorithm to learn from the feedback
of a human screener and continuously improve its perfor-
mance in identifying relevant abstracts. Two essential
processes are required to utilize an active learning algo-
rithm for AI-AS: First, the algorithm extracts relevant
information, such as phrases, keywords, and patterns
from all abstracts. This process is performed by algo-
rithms known as feature extractors, such as Term
Frequency-Inverse Document Frequency (TF-IDF27),
doc2vec,28 and Sentence-Bidirectional Encoder Representa-
tions from Transformers (SBERT29). The extracted ele-
ments are then compared across relevant and irrelevant
abstracts and weighted to determine their importance in
predicting the relevance of unseen abstracts. Second,
using this information, classifiers calculate inclusion
probabilities for abstracts that have not yet been
screened. These probabilities indicate the likelihood of an
abstract being relevant, guiding the order in which the
abstracts should be presented for screening. Typical clas-
sifiers in AI-AS are Random Forest (RF30), Support Vector
Machine (SVM31), Fully Connected Neural Network with
2 hidden layers (nn-2-layer32), Logistic Regression (LR33),
and Naïve Bayes (NB34).

However, in the following sections, we will refer to
the combination of both feature extractors and classifiers
as a learning algorithm. Such learning algorithms require
a training set to create the initial ranking of relevancy,
including at least one abstract labeled as relevant and
one labeled as irrelevant. All manually screened
and labeled abstracts are then added to the training set,
providing more information to the learning algorithm to
update the ranking. In this sense, active learning is not
an entirely automated process of labeling abstracts.
Active learning requires the active involvement and feed-
back of a human screener. For a comprehensive review
of active learning, we refer readers to Settles.35 Besides
this semiautomatic approach, some AI-AS tools employ
fully automated methods that only require training data
to categorize abstracts as relevant or irrelevant. However,
their performance is insufficient, whereas semiautomatic
AI-AS performed well on the same abstract collections
(18; see also8).

2.2 | The AI-AS tool “ASReview”

ASReview is an AI-AS tool that integrates all the feature
extractors and classifiers utilized in this study.36 Whereas
other AI-AS tools include some of the learning algo-
rithms that ASReview contains (e.g., SVMs), the flexibil-
ity to choose from a wide range of learning algorithms is

unique to ASReview (see Reference 15 for a comparison
of the tools). In addition, ASReview is an open-source
software that can be accessed via a user interface, com-
mand line, and Python Application Programming Inter-
face (API). Being open-source, ASReview allows users to
access and modify its source code and ensure transpar-
ency in the review process. Moreover, ASReview offers
an intuitive simulation mode, which can simulate the AI-
AS process on pre-labeled data. In essence, AI-AS is sim-
ulated by imitating a human screener. After a training set
of at least one relevant and one irrelevant abstract is pro-
vided, all abstracts are ordered according to their pre-
dicted probability of belonging to the relevant category.
The abstract with the highest likelihood of being relevant
is then selected and labeled according to the associated
labels previously provided by a human screener. Thus,
the simulation mode consistently aligns with the deci-
sions made by the researchers who initially screened the
abstracts for their research synthesis.36

ASReview has consistently demonstrated satisfactory
performance across various evaluation studies.19

observed that screening only 8–33% of abstracts led to the
identification of 95% of all relevant abstracts. These posi-
tive outcomes were further supported by Ferdinands,37

who observed that screening 10% of all abstracts led to
the identification of over 80%, and screening 20% enabled
the discovery of 95% of relevant publications.38 However,
it is essential to recognize that studies displayed varying
performances across different learning algorithms and
abstract collections. For instance, in a study conducted
by Harmsen et al.,39 the authors identified 95% of the rel-
evant abstracts by screening anywhere from 2 to 70% of
all abstracts while employing the same learning algo-
rithm. Moreover, they highlighted the critical role of
accurate abstract classification, emphasizing its
substantial influence on the algorithm's performance.
Higher-quality labels yielded better performance. To
assess classification quality, individuals with varying
skills labeled the abstracts as relevant or irrelevant.
The labeled abstracts were then used to simulate using
the AI-AS tool ASReview. Another study delved deeper
into the variations in performance among different learn-
ing algorithms. While keeping the abstract collection
constant, Teijema et al.16 observed considerable differ-
ences in the order of abstracts, which is determined by
the learning algorithms. The authors also explored
whether switching to more complex learning algorithms
after meeting stopping rules could enhance the perfor-
mance of the overall AI-AS process. Their results sug-
gested that additional relevant articles can be identified
more quickly by switching to a different learning algo-
rithm. Nonetheless, this effect was less pronounced when
using the LR + SBERT algorithm (see Supporting
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Information), which outperformed other algorithms with
and without switching.16,26 Another technique to
increase the overall performance of the AI-AS screening
process was proposed by Boetje and van de Schoot.40 The
authors developed a four-step screening procedure for
AI-AS, which comprises a random screening phase, an
AI-AS screening phase, another AI-AS screening phase
with a different learning algorithm, and a quality control
phase. The latter summarizes an AI-AS of the previously
excluded abstracts to control for misclassification. This
step is similar to a recently proposed noisy label filter
framework, which aims to reconstruct and update previ-
ously conducted literature searches.41

Although these results imply the immense potential
of ASReview, it is important to emphasize that most eval-
uation studies have primarily focused on clinical, educa-
tional, or non-psychology-related literature.16,19,26,38,39

Consequently, performance variations may arise when
using AI-AS for abstract collections from other research
domains. Such variations might be attributed to differ-
ences in the number of abstracts, the prevalence of rele-
vant abstracts, and the specific keywords utilized in each
domain.26 Moreover, as some stopping rules depend on
the occurrences of consecutive nonrelevant abstracts dur-
ing the screening process, we contend that variations in
screening orders among different learning algorithms
could potentially influence the effectiveness of these stop-
ping rules.

2.3 | Stopping AI-AS

Determining the optimal stopping point in AI-AS is a
critical aspect of the AI-AS process, ultimately influenc-
ing the identification rate of relevant literature. In tradi-
tional literature screening, approximately 10% of relevant
articles are overlooked.17 However, as Teijema et al.16

reported, missing 5–10% of relevant articles may not sig-
nificantly impact the results of a meta-analysis.16 There-
fore, researchers should aim to achieve at least a similar
performance when utilizing AI-AS. Moreover, it is essen-
tial to find stopping rules that can achieve such perfor-
mance with the lowest screening cost, that is, with the
fewest abstracts needed to be screened. However, the lack
of systematic evaluations of the performance of various
stopping rules makes it challenging to select a stopping
rule that can achieve this goal. Whereas some AI-AS tools
have integrated estimation of the number of relevant
studies to aid users in this decision-making,23,25 many
tools, including ASReview, do not provide explicit guid-
ance on choosing a stopping point. In our review of
meta-analyses and systematic reviews referencing ASRe-
view, we found that many studies did not disclose their

stopping criteria for the AI-AS process. This lack of dis-
closure may be attributed to the absence of initial guide-
lines for AI-AS tools. Thus, we urge users of these tools
to adhere to both conventional systematic review and
meta-analysis guidelines, as well as new guidelines to
ensure transparency and reproducibility of the AI-AS
process.42,43 Several studies have utilized the stopping
rule proposed by Ros et al.,24 which involves stopping the
AI-AS process after screening n consecutive irrelevant
abstracts. The value of n varied between studies, ranging
from 20 to 500.44,45 This finding, coupled with the obser-
vation that some authors opted to screen all identified
abstracts despite using ASReview,46,47 underscores the
uncertainty surrounding the selection of a stopping rule
and highlights the need for a systematic evaluation.

2.3.1 | Stopping rules

Several stopping rules have been developed to address
the challenge of determining a reliable stopping point in
AI-AS. Among these rules, heuristic stopping rules pro-
vide a straightforward and practical approach. Two
prominent examples are the time-based approach, where
the screening should be stopped after screening a certain
percentage of the abstracts,11 and the data-driven
approach,24 which stops the screening after n consecutive
irrelevant abstracts. Whereas Wallace's time-based
approach relies on screening a fixed percentage, Ros
et al.'s24 data-driven method is more adaptive, allowing
adaptation to a specific context, such as different preva-
lence ratios. Other stopping rules adopt a more statisti-
cally grounded approach to determine the optimal
stopping point. For instance, prevalence estimation
methods estimate the number of relevant abstracts in a
given collection. The screening can then be stopped once
the estimate equals the number of identified relevant
abstracts or a specified proportion of it. One such method
is included in the AI-AS tool SWIFT-Active Screener.23 It
estimates the number of relevant abstracts based on the
assumption that their occurrence during AI-AS follows a
negative binomial distribution. Moreover, the estimate is
derived from the number of relevant abstracts found
between the latest screened abstract and the Xth previ-
ously identified relevant abstract. Consequently, this
method requires implementation in the AI-AS tool to
update the estimate with each screening decision (see
Reference 23 for additional information). However, due
to its complexity insufficient information regarding its
implementation, this estimation technique cannot be
applied outside of the AI-AS tool SWIFT-Active Screener.
Therefore, Callaghan and Müller-Hansen21 proposed an
alternative estimation technique that operates similarly
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but is based on the assumption that relevant abstracts fol-
low a hypergeometric distribution. While the authors
provide all necessary information to use this technique, it
also needs to be integrated into the screening process.
Another recently published estimation technique which
also requires implementation in the AI-AS process, uti-
lizes Chao's Population Size Estimator to estimate the
number of relevant articles during the AI-AS process.20

In contrast to these techniques, van Haastrecht et al.6

proposed a simple technique that can be used to estimate
the prevalence of relevant articles before starting the AI-
AS process. The authors suggested estimating the number
of relevant abstracts based on a random sample from the
identified and deduplicated results from the literature
search (abstract collection). Users should randomly
screen abstracts until a predefined number of relevant
studies have been detected or a specific percentage of the
abstracts have been screened. For instance, a researcher
can randomly screen 50 abstracts out of 1000 identified
articles and estimate the prevalence based on this 5% sub-
set, as shown in Equation 1. In this equation, N is the
number of abstracts in a given abstract collection, r is
the number of relevant abstracts identified by random
screening, and i is the number of irrelevant abstracts
screened randomly.

R≈N
r

rþ i

� �
ð1Þ

To prevent overestimation due to oversampling rele-
vant abstracts, the estimated number R should further be
multiplied by a factor of 0.95. After this estimation, the
remaining 950 abstracts can be screened using an AI-AS
tool. The screening can be stopped after the 0:95 �R rele-
vant abstracts are identified.

Besides estimating the number of relevant articles,
another statistically grounded technique is the knee
method.22 This method calculates the ratio between the
slope before (slope< r) and after a critical inflection point
(slope> r) in the gain curve (see Figure B1, Appendix B),
which is referred to as the “knee.”48 The gain is repre-
sented by the connection between the number of
screened abstracts (x-axis) and the number of identified
relevant abstracts (y-axis). As the learning algorithm
improves its performance in identifying relevant abstracts
during screening, the gain curve typically becomes
steeper at the beginning. However, at some stage in the
AI-AS process, the gain curve levels off because the algo-
rithm encounters difficulties in identifying the remaining
relevant abstracts that tend to be less similar to the ini-
tially screened, relevant abstracts. This point of inflection
is the “knee.” The calculation of a simple version of the
slope ratio in the knee method, adapted from van

Haastrecht,49 is shown in Equation 2. With
r representing a given rank below the total number of the
screened abstracts s. The number of the relevant abstracts
before rank r is represented by rel< r , the number of
abstracts screened at rank r is i, and the number of rele-
vant abstracts among all screened abstracts is represented
by reltotal. The 1 in the denominator is added for smooth-
ing, that is, to avoid edge cases in which i is close to s,
and no more relevant articles are identified after rank r.

slope ratio¼ slope< r

slope> r
¼

rel< r
i

1þreltotal�rel< r
s�i

ð2Þ

To stop the AI-AS process, the slope ratio is compared
to a predefined value. When it exceeds this threshold, the
AI-AS process can be stopped. In an ideal scenario, a per-
fect algorithm would order the unlabeled abstracts so
that all relevant abstracts are placed at the top and, thus,
at the beginning of the screening. In this case, the slope< r

would be 1, and the slope> r would be 0. However, in a
more realistic example, the slope< r will be below 1, and
the slope> r will only approach 0. For instance, in a data-
set with 1000 abstracts, 50 of which are relevant, a
slope< r of 0.7 could be attained when 35 relevant
abstracts are within the first 50 screened abstracts. In this
example, the knee would be reflected by the rank 50. The
slope> r , on the other hand, would be equal to 0.1 when
the next relevant abstract would appear after screening
an additional 10 abstracts. Note that the knee method
adds 1 to the number of relevant abstracts identified after
the knee for smoothing. Thus, a slope of 0.1 would be
attained after screening an additional 20 abstracts, in
which 1 would be labeled as relevant. However, the
authors recommend that the slope ratio should be greater
than or equal to 6 to stop the AI-AS process. In our exam-
ple, this would have led to stopping the AI-AS.

Nevertheless, the authors also propose that even
higher values than 6 might be more suitable in certain
contexts. Unfortunately, the knee method has not been
incorporated in any of the 15 tools reviewed by Burgard
and Bittermann.15 To apply this method, the AI-AS must
be paused to extract the ordered list of all currently
labeled abstracts. Using this data, the knee can be calcu-
lated. If the knee value remains below 6, the user must
continue the screening, pausing, and knee calculation
process. Thus, the knee method's unique characteristic
might limit its practical use in the eyes of many users.

In addition to the presented stopping rules, various
other methods have been developed.21,22,50,51 Nonethe-
less, after reviewing studies citing ASReview and follow-
ing an ongoing discussion on GitHub,52 we identified the
explained stopping rules as the most commonly used and
discussed methods within the community of ASReview.
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2.3.2 | Performance of the stopping rules

As noted earlier, systematic evaluations of the perfor-
mance of the stopping rules are still rare. Specifically,
there is no evaluation study regarding the prevalence
estimation technique proposed by van Haastrecht et al.6

However, the estimation procedure integrated in the AI-
AS tool SWIFT-Active Screener has shown promising
results, identifying 91.5–100% of all relevant abstracts
across 26 clinical abstract collections.23 Additionally, cer-
tain implementations of the estimation technique based
on Chao's Population Size Estimator have been found to
perform well across a variety of different abstract collec-
tions from various research domains, with identification
rates of relevant abstracts above 95%.20 Also, the estima-
tion technique of Callaghan and Müller-Hansen21

resulted in similar identification rates regardless of the
performance of learning algorithms. Nonetheless, such
estimation techniques bear the risk of under- and overes-
timating the proportion of relevant abstracts. The latter
results in not stopping the AI-AS until all abstracts are
screened.53 Moreover, as these techniques require infor-
mation such as the rank at which an abstract was
screened, they need to be implemented in the AI-AS tool
or the screened data must be downloaded to calculate the
predicted number of relevant abstracts. Thus, they lack
practical usefulness.54 The simple estimation technique
of van Haastrecht et al.6 overcomes this shortcoming.

The evidence regarding the performance of the heu-
ristic approach proposed by Ros et al.24 is mixed. For
example, stopping after 50 consecutive irrelevant
abstracts resulted in finding 76–97% of the relevant
abstracts across four abstract collections from the field of
computer science.25 However, Callaghan and Müller-
Hansen21 found that the same procedure failed to identify
95% of all relevant abstracts in 39% of the cases when
assessed across 20 clinical abstract collections. The per-
formance improved when stopping after 200 consecutive
irrelevant abstracts. This implementation of the data-
driven heuristic stopping rule resulted in finding 95% of
the relevant abstracts after screening 17.14% of them.
This finding aligns with other recent investigations of this
method, which revealed that the performance of stopping
after screening 50 consecutive irrelevant abstracts varied
strongly across different medical-related abstract collec-
tions, with identification rates ranging roughly between
30 and 100%. Stopping after 100 consecutive irrelevant
abstracts resulted in better performance, with identifica-
tion rates ranging from around 65–100%.54 Moreover, in
this study, the difference in performance across cut-off
values was more pronounced when using the AI-AS tool
Rayyan55 compared to ASReview.19 However, the median
performance with a cut-off value of 100 was higher for

Rayyan. When comparing cut-off values of 50, 100,
150, and 200 for an abstract collection from the field of
health economics, other interesting findings emerged.56

While the median performance increased notably when
the cut-off was set to 100 instead of 50, it did not further
increase for larger cut-off values. Nonetheless, the
variability in performance across replication runs with
varying training sets diminished when at least 150 consec-
utive irrelevant abstracts needed to be screened before
stopping the AI-AS. Another unique result from this
research is that, while all cut-off values resulted in miss-
ing roughly 20% of the potentially relevant abstracts, they
still identified almost 100% of the studies deemed rele-
vant after full-text screening. In addition, when five
instead of one randomly selected relevant and irrelevant
abstract were used to train the learning algorithm (NB
+ TF-IDF), the variability in performance was consider-
ably reduced for both potentially relevant and actually
relevant abstracts. In contrast to these studies, Campos
et al.26 evaluated the data-driven heuristic with an adap-
tive cut-off value. They determined the number of con-
secutive irrelevant abstracts as percentages of the total
number of abstracts. Thus, a cut-off value of 5% in an
abstract collection of 1000 abstracts translates to stopping
after 50 consecutive irrelevant abstracts, while 100 consec-
utive irrelevant abstracts need to be screened for an
abstract collection of 2000. When averaged across differ-
ent learning algorithms and abstract collections from
educational and educational psychology research synthe-
ses, setting this value to 7% resulted in detecting 95% of
relevant abstracts in all abstract collections.

As for the data-driven heuristic, results regarding the
time-based heuristic are mixed. For instance, while
screening 50% of all abstracts resulted in identifying up to
100% of relevant abstracts in some studies,11,57 others
required screening 70–achieve the same result.26,54 More-
over, in a recent study by Oude Wolcherink et al.,56 stop-
ping after screening 7.5% of the abstracts resulted in
identifying less than 75% of potentially relevant articles,
while nearly all actually relevant articles after full-text
screening were identified. The authors also observed that
the variability in performance across simulation runs
with different training sets diminished when using five
instead of one randomly chosen abstract to train the
learning algorithm. However, these results are based
solely on a single abstract collection from the field of
health economics. Notably, combining the data-driven
and time-based heuristics revealed promising results. In a
recent study by Campos et al.,26 95% of the relevant
records were detected after screening 20% of the abstracts
and then stopping after 5% consecutive irrelevant
abstracts. Note that other implementations of this combi-
nation resulted in the same detection rate.
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Apart from the heuristic stopping rules, the knee
method identified 93–99% of all relevant records across
10 diverse text collections, including hacker forums and
clinical databases.22 These results were also confirmed by
Yu and Menzies,25 who observed that the knee method
found 88–97% of all relevant abstracts in four computer
science-related text collections.

In conclusion, the results of these evaluation studies
highlight considerable variability in the performance of
the described stopping rules across different research
contexts and AI-AS tools, thus compromising their gener-
alizability. Furthermore, as the majority of evaluation
studies were based on abstract or text collections from
nonpsychological research domains, the performance of
these rules in the field of psychology remains
unknown.11,21,23–25,54,57 Given the variation in publishing
guidelines, keywords, and phrases across different
research areas, we anticipate that these distinctions may
impact the learning algorithm's capacity to effectively for-
mulate a relevance ranking. Another limitation is that
none of the evaluation studies manipulated or standard-
ized the abstract collections, making it challenging to
trace performance variations across abstract collections
and studies back to specific factors, such as the abstract
collection itself or the prevalence of relevant abstracts.
Finally, different AI-AS tools with varying learning algo-
rithms were used for the performance evaluations, fur-
ther complicating the comparison of results. Therefore,
the primary goal of this study is to address these limita-
tions and determine whether the variations in perfor-
mance are influenced by the abstract collections
themselves, the learning algorithms utilized, or the dis-
crepancies in the prevalence of relevant abstracts.

2.4 | The present study

As noted earlier, AI-AS tools can considerably reduce the
time and effort needed to conduct a systematic review.15

However, at the current stage of research, it is not yet
possible to make any reliable statements regarding the
actual performance of such tools. A critical component in
utilizing AI-AS is the determination of a stopping point.
The stopping point not only determines how much time
can be saved but also how many of the relevant abstracts
can be detected.26 To date, our knowledge regarding the
performance of stopping rules in diverse conditions
remains scarce, particularly within the context of
psychology-related abstract collections. Furthermore, a
systematic evaluation of the prevalence of pertinent
abstracts remains absent from the literature. Addition-
ally, there is a notable gap in our understanding regard-
ing how different learning algorithms may influence the
effectiveness of various stopping rules.

The present study aims to overcome these shortcom-
ings by assessing the performance of three different stop-
ping rules with abstract collections sourced from various
psychological research domains. We standardized the
prevalence of relevant abstracts across abstract collec-
tions and manipulated it within each. Then, we
employed different learning algorithms for each manipu-
lated abstract collection and applied several stopping
rules. Through this comprehensive and systematic
approach, we sought to shed light on the optimal utiliza-
tion of AI-AS in psychological research and provide valu-
able insights for the development of efficient and
accurate screening processes. We chose ASReview for our
study because it offers various learning algorithms—a
feature allowing us to assess differences between them.
To evaluate the efficiency and accuracy of the stopping
rules, we focused on key measures, such as sensitivity,
specificity, and cost. We addressed the following research
questions (RQs) concerning the performance of stopping
rules in AI-AS:

RQ1. How do the three stopping rules
(i.e., prevalence estimation, knee method, and
data-driven heuristic) perform under different
abstract collections, prevalence ratios, and
learning algorithms?

RQ2. How does the prevalence ratio moder-
ate the performance of the stopping rules?

RQ3. How does the learning algorithm mod-
erate the performance of the stopping rules?

RQ4. How does the learning algorithm mod-
erate the interaction between abstract collec-
tion and prevalence ratio?

RQ5. How does the abstract collection mod-
erate the effect of the stopping rules?

3 | METHODS

The present study is best described as a hybrid simulation
approach combining real-world data collection with sim-
ulation techniques. We gathered abstract collections from
meta-analyses published in six different psychological
research domains. We then manipulated the abstract
collections regarding the prevalence ratio of relevant to
irrelevant abstracts. All manipulated datasets were subse-
quently used in ASReview to simulate abstract screening
while using different stopping rules. We preregistered
each step of the present study and adjusted the preregis-
tration to address the challenges we encountered when
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drawing meta-analyses from the different research
domains (https://osf.io/ucz8d). Given the exploratory
nature of our study, we did not preregister any hypotheses,
and all changes of the preregistration were documented
and justified (see Supporting Information). Furthermore,
we have made all relevant materials, including the data
and analytic code, available via the Open Science Frame-
work (https://osf.io/7yhrq). However, we did not receive
permission to share all abstract collections.

3.1 | Data collection

We carefully designed the data collection procedure to
create diverse abstract collections covering various psy-
chological research domains: Applied Psychology, Social
Psychology, Biological Psychology, Clinical Psychology,
Developmental Psychology, and Educational Psychology.
To ensure that the project remains within manageable
boundaries, we predefined the number of meta-analyses
from which to request the data to 180. We distributed the
request as equally as possible across research domains.
To ensure the feasibility of our data manipulation, we
established eligibility criteria for the meta-analyses. Spe-
cifically, an eligible meta-analysis had to encompass a
minimum of 50 relevant abstracts out of at least 1000
screened abstracts. In addition, the meta-analysis had to
be documented in either English or German. To account
for missing meta-analyses in a specific domain, we
requested additional meta-analyses from one of the other
five domains (for more details, please see the Supporting
Information). This resulted in the following distribution
of data requests: Applied Psychology (n = 36), Biological
Psychology (n = 14), Clinical Psychology (n = 36), Devel-
opmental Psychology (n = 35), Educational Psychology
(n = 29), and Social Psychology (n = 30). Ultimately, we
acquired data from 28 meta-analyses, 21 of which met
the eligibility criteria. To be considered eligible, the data-
sets had to include at least abstracts and the respective
screening decisions. Unfortunately, we did not receive
any eligible data from the domain of Biological Psychol-
ogy. However, the data we received was relatively evenly
distributed across the other domains: Applied Psychology
(n = 4), Clinical Psychology (n = 3), Developmental Psy-
chology (n = 5), Educational Psychology (n = 5), and
Social Psychology (n = 4). All received abstract collec-
tions were cleaned by deleting records with missing
abstracts. As most received abstract collections lacked a
digital object identifier for each abstract, we deduplicated
the abstracts based on the title using the R package
revtools.58 In some cases, we obtained the data in a text
format and then separated titles from abstracts. Descrip-
tive statistics for the datasets are presented in Table 1.

3.2 | Data manipulation

Our sample consisted of 21 original abstract collections
(OACs) from 21 meta-analyses. Each OAC was reas-
sembled into four artificial abstract collections (AACs)
with manipulated prevalence ratios of relevant and irrele-
vant abstracts (0.5, 1, 5, and 10%), yielding 4 �21¼ 84
AACs. To address the issue of selection bias during the
construction of the AACs, we implemented a resampling
approach in which each collection was resampled
1000 times. Through this method, we obtained
84 �1,000¼ 84,000 replicated AACs (RAACs), which were
the unit of analysis (please see the Supporting Informa-
tion for more information).

3.3 | Simulation design

The simulation was conducted with the Python API from
ASReview.36 Our analytic code was written in R80 with
the help of the R package reticulate,81 which integrates
Python code into R. Each of the 84,000 RAACs was used
to simulate AI-AS with each of nine learning algorithms
(i.e., LR + doc2vec, LR + SBERT, LR + TFIDF, NB
+ TFIDF, nn2layer + doc2vec, nn2layer + SBERT, RF
+ doc2vec, RF + TFIDF, and SVM + TFIDF), resulting
in 756,000 simulation runs. In each run, one relevant and
one irrelevant abstract were randomly selected to train
the learning algorithm. It is important to note that the
authors of the respective meta-analyses solely determined
the classification of abstracts as relevant or irrelevant. We
did not independently classify abstracts ourselves—
instead, we relied on the authors' classification. Across all
simulation runs, we set up ASReview with the default
balancing strategy “dynamic resampling” and the default,
certainty-based query strategy (see Supporting Informa-
tion for additional information regarding ASReview). We
used the same seed to simulate the data as the one
we used to create the RAAC so that the same seed was
used for all AACs of the same replication run. This way,
we ensured homogeneity within each replication run and
introduced heterogeneity between these runs. We recal-
culated inclusion probabilities after every 10 newly
labeled abstracts to reduce computation time. As a result,
we received 756,000 ordered abstract collections, in
which each abstract was labeled as either relevant or
irrelevant in the order they would have been screened.
To reduce computational time, the simulation process
stopped after all relevant articles had been found. We
then applied each of the three stopping rules on each
ordered RAAC. Overall, we simulated the application of
each stopping rule 756,000 times, which resulted in
2268,000 data points for each performance measure.
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3.3.1 | Implementation of the stopping rules

We implemented the data-driven heuristic,24 a preva-
lence estimation method,6 and the knee method22 as
stopping rules, following the recommendations of the
authors who introduced them. However, because
the knee method required a minimum of two relevant
abstracts to work, we paired each stopping rule with the
rule that at least two relevant abstracts needed to be
found. Thus, the worst performance was indicated by
finding at least two relevant articles. However, apart from
this specification, we followed the implementation of the
stopping rules as recommended. For the prevalence esti-
mation technique,6 we randomly sampled 10% of all

abstracts from the unordered RAACs. On the basis of
these 10%, we calculated the prevalence of relevant
abstracts and multiplied it by 0.95. The estimate was con-
sistently rounded off. The screening stopped once the
number of relevant abstracts was equal to or greater than
the estimate. Considering an abstract collection of 3800
abstracts, 380 abstracts were screened randomly. If, for
example, 10 of these 380 abstracts were marked as
relevant, the prevalence ratio would have been
2.63%. Consequently, we would have estimated that
3,800�380ð Þ �0:0263 �0:95≈ 85 of the unscreened
abstracts were relevant. Thus, the screening would have
stopped after identifying 85 relevant abstracts. If the ran-
dom sampling resulted in finding zero relevant abstracts,

TABLE 1 Descriptives of the original and artificially constructed abstract collections.

Artificial abstract collection

Original abstract collection N; nrelevant

Meta-analysis D. N; nrelevant Ratio 0.5% 1% 5% 10%

Vermillet et al.59 D 1875; 206 12.34 1407; 7 1515; 15 1659; 79 1738; 158

Bottema-Beutel et al.60 D 6283; 743 13.41 5226; 26 5252; 52 5523; 263 5786; 526

Khazanov et al.61 C 3423; 250 7.88 3015; 15 3030; 30 3150; 150 2607; 237

Reimer and Sengupta62 S 2661; 219 8.97 2211 2323; 23 2415; 115 2288; 208

Hall et al.63 E 13,531; 544 4.19 12,261; 61 12,423; 123 10,836; 516 5676; 516

Simonsmeier et al.64 E 9768; 1507 18.24 7839; 39 7878; 78 8232; 392 8624; 784

Hsieh et al.65 S 2343; 107 4.79 2010; 10 2121; 21 2121; 101 1111; 101

Alden et al.66 A 1486; 59 4.13 1206; 6 1313; 13 1176; 56 616; 56

Liu et al.67 C 1585; 579 57.55 804; 4 909; 9 987; 47 1045; 95

Tang et al.68 E 2053; 53 2.65 1809; 9 1919; 19 1050; 50 550; 50

Ober et al.69 E 6124; 718 13.28 5025; 25 5151; 51 5376; 256 5643; 513

Castro-Alonso et al.70 E 2351; 217 10.17 2010; 10 2020; 20 2121; 101 2222; 202

Bourke et al.71 D 9308; 158 1.73 8643; 43 8686; 86 3150; 150 1650; 150

Karabinski et al.72 A 1840; 70 3.95 1608; 8 1616; 16 1386; 66 726; 66

Estevez Cores et al.73 A 1784; 227 14.58 1407; 7 1414; 14 1533; 73 1617; 147

Schindler et al.74 S 2272; 414 22.28 1608; 8 1717; 17 1848; 88 1936; 176

Endendijk et al.75 S 1271; 274 27.48 804; 4 909; 9 987; 47 1034; 94

Dailey and Bergelson76 D 4992; 203 4.24 4422; 22 4545; 45 4032; 192 2112; 192

Woods et al.77 A 5955; 265 4.66 5427; 27 5454; 54 5271; 251 2761; 251

Leijten et al.78 C 4382; 262 6.36 3819; 19 3939; 39 4095; 195 2728; 248

Zaneva et al.79 D 7266; 89 1.24 6834; 34 6868; 68 1764; 84 924; 84

Min. 1271; 53 1.24 804; 4 909; 9 987; 47 550; 50

Max. 13,531; 1507 57.55 12,261; 61 12,423; 123 10,836; 516 8624; 784

First quartile 1875; 158 4.19 1608; 8 1616; 16 1533; 73 1045; 95

Median 2444; 227 7.88 2010; 10 2121; 21 2121; 101 1936; 176

Third quartile 4396.95; 341.10 11.66 3771.14; 18.76 3847.62; 38.10 3262.00; 155.33 2542.05; 231.10

Note: N = total number of abstracts; nrelevant ¼number of relevant abstracts; D.= research domain; ratio= prevalence ratio; D= developmental, C= clinical;

S= social; E= educational; A= applied psychology.
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we randomly sampled a prevalence to simulate a gues-
sing researcher. We drew this sample from a truncated
normal distribution with a lower bound of 0.01%, upper
bound of 1%, mean of 0.5%, and standard deviation of
0.1%, using the R package truncnorm.82

We stopped for the data-driven heuristic24 after 2.5% of
all abstracts had been marked as irrelevant in a row. We
decided to use the percentage corresponding to the num-
ber of consecutive irrelevant abstracts, as recommended
by Ros et al.24 As Ros and colleagues used a dataset with
1939 abstracts, 50 consecutive, irrelevant abstracts reflect
roughly 2.5%. Because our OACs had large variation in the
total number of abstracts, we used percentages instead of
fixed numbers. Thus, considering an abstract collection
with 3800 abstracts, we stopped the screening after
3,800 �0:025¼ 95 consecutive irrelevant abstracts.

To implement the knee method,22 we adopted the
code provided by van Haastrecht.49 This algorithm calcu-
lates the slope ratio after each newly labeled abstract.
Two parameters had to be specified: the number of rele-
vant articles identified before the algorithm starts and the
slope ratio, which needs to be attained to stop the screen-
ing. We defined the algorithm as starting after finding
two relevant articles. Furthermore, the screening was
stopped once the slope ratio was equal to or greater than
6, or all abstracts were screened. The slope ratio was cal-
culated as shown in Equation 2.

3.3.2 | Performance measures

The performance of each stopping rule was assessed in
three different ways. Once a screening stops, the abstracts
could be divided into a screened and unscreened section.
We labeled all screened relevant abstracts true positives
(TP) and all screened but irrelevant abstracts false positive
(FP). Similarly, we labeled all relevant but unseen abstracts
false negative (FN) and all unseen irrelevant abstracts true
negative (TN). Performance measures were the sensitivity
(often referred to as recall), specificity, and cost:

Sensitivity¼ TP
TPþFN

, ð3Þ

Specificity¼ TN
FPþTN

, ð4Þ

Cost¼ TPþFP
TPþFPþTNþFN

ð5Þ

We chose to introduce performance measures that are
familiar to psychologists for the sake of clarity and ease
of understanding.

3.4 | Statistical analysis

To analyze the results of each performance measure (sen-
sitivity, specificity, cost) separately, we conducted three
9 (learning algorithms) � 4 (prevalence ratios) � 3 (stop-
ping rules) � 21 (OACs) mixed-effects ANOVAs with
prevalence ratios as between-subject and stopping rules
and learning algorithms as within-subject factors. As the
RAACs were the unit of analysis and to account for
the fact that multiple RAACs were derived from the same
OAC, we incorporated OAC as a fixed effect in our
model. Consequently, our model specification included
12 parameter estimates: the main effect of stopping rule
(1), learning algorithm (2), prevalence ratio (3), OAC (4),
the two-way interactions stopping rule � prevalence ratio
(5), stopping rule � learning algorithm (6), learning
algorithm � prevalence ratio (7), stopping rule � OAC
(8), and learning algorithm � OAC (9), the three-way
interactions stopping rule � learning algorithm � preva-
lence ratio (10), stopping rule � learning algorithm �
OAC (11), and the residual variance (12). Our experimen-
tal design consisted of 108 groups, each comprising
21,000 observations. When including the control factor
OAC, we had 2268 groups with 1000 observations each.
All calculations were done in R,80 and we conducted the
ANOVAs using the R package afex.83 In line with the
explorative nature of this study, we examined the main
and interaction effects. However, no post-hoc tests were
computed. Instead, we provide bar plots with means and
bootstrapped confidence intervals for each effect that
exceeded an effect size of η2 ≥ :01. The effect sizes were
interpreted in line with J. Cohen84 as η2 ¼ :01 (small),
η2 ¼ :06 (medium), and η2 ¼ :14 (large).

Outliers were detected using the R package rstatix.85

This package detects outliers as data points outside
Q25%�1:5 � IQR and Q75%þ1:5 � IQR, respectively.
Extreme outliers are detected by multiplying the Inter-
quartile range by a factor of 3. We checked the assump-
tion of normality using QQ-Plots constructed using the R
package ggpubr.86 Finally, the assumption of sphericity
was checked using the afex R package.83 If the assump-
tion was violated, we applied a Greenhouse–Geisser cor-
rection.87 The testing for statistical significance was
conducted based on a significance level of α¼ 0:05:

4 | RESULTS

4.1 | Descriptive statistics

The literature search resulted in eligible abstract collec-
tions from 21 meta-analyses, as detailed in Table 1. Origi-
nally, the number of abstracts within the 21 received
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abstract collections ranged from 1271 to 13,531, with a
median of Mdn¼ 2,444 IQR¼ 2,522ð Þ. The number of
relevant abstracts ranged from 53 to 1507, with a median
of Mdn¼ 227 IQR¼ 183ð Þ. The original prevalence ratios
ranged from 1.24 to 57.55%, with a median of
Mdn¼ 7:88% IQR¼ 7:47%ð Þ. It is important to note that
the number of abstracts and the prevalence of relevant
abstracts were based on the data we received. However,
we manipulated the OACs so that their sample size and
number of relevant studies mirrored the values of the
AACs presented in Table 1.

4.2 | Main analyses

Testing for outliers, sphericity, and normal distribution
revealed that all assumptions of the mixed-effects ANO-
VAs had been violated (see Supporting Information for
more details). However, given that some evidence

suggests the robustness of mixed-effects linear models
against violations of their assumptions,88 we continued
computing the ANOVAs for sensitivity, specificity, and
cost (Supporting Information, Tables S1, S2, and S3,
respectively). All effect sizes (η2) larger than or equal to
0.01 are summarized in Figure 1.

4.2.1 | Sensitivity

The mixed-effects ANOVA for sensitivity revealed consid-
erable variation in effect sizes (Supporting Information,
Table S1). All means and 95% CIs concerning the design
factors stopping rule, learning algorithm, and prevalence
estimation are presented in Table A1 (Appendix A). The
main effect of the learning algorithm and all interactions
involving the learning algorithm were negligible
(η2 < 0:01). Means and 95% CIs regarding the interaction
between the stopping rule and the learning algorithm are

FIGURE 1 Bar-plot pertaining to the effect sizes from the mixed-effects ANOVAs. Effect sizes of factors and interactions in η2 for

(a) sensitivity, (b) specificity, and (c) screening cost. Only effect sizes η2 ≥ 0:01 are visualized. Rule= Stopping rule, Ratio=Prevalence ratio.
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provided in Table S4 (Supporting Information). In
contrast, we observed a medium-strong main effect of
the stopping rule (F 1:81,151584:57ð Þ¼ 38921:78,
p<0:001,η2 ¼ 0:076). As Figure 2a illustrates, the preva-
lence estimation stopping rule achieved the highest

sensitivity (M= 81.87, 95% CI [81.82, 81.93], followed by
the data-driven heuristic stopping rule (M= 72.27, 95%
CI [72.21, 72.32]). The knee method performed least
favorably M= 65.71, 95% CI [65.64, 65.78]). The main
effect of the prevalence ratio also exhibited a medium

FIGURE 2 Bar-plot pertaining to the main effects and interaction of stopping rule and prevalence ratio. This figure shows the (a) main

effect of stopping rule, (b) main effect of prevalence ratio, and (c) interaction of stopping rule and prevalence ratio, separately for sensitivity,

specificity, and cost. As the CIs were too small to be visible, we did not include them in the figure. HM, heuristic method; KM, knee method;

PE, prevalence estimation.
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effect size (F 3,83976ð Þ¼ 17214:32, p<0:001,η2 ¼ 0:074).
The 5% (M= 77.21, 95% CI [77.15, 77.28]) and 10%
(M= 81.75, 95% CI [81.69, 81.81]) prevalence ratio condi-
tions outperformed the 0.5% (M= 68.77, 95% CI [68.69,
68.85]) and 1% (M= 65.40, 95% CI [65.32, 65.48]) condi-
tions. In addition, we observed a moderate interaction
between the prevalence ratio and the stopping rule, as
shown in Figure 2c and Table A2 (Appendix A). The
knee method achieved higher sensitivity values than the
heuristic stopping rule in the low-prevalence ratio condi-
tions (0.5 and 1%). Conversely, the heuristic stopping rule
outperformed the knee method in high-prevalence ratio
conditions (5 and 10%). However, the prevalence estima-
tion stopping rule outperformed the other rules in all but
the 10% ratio condition, performing equally well as the
data-driven heuristic.

4.2.2 | Specificity

The mixed-effects ANOVA focusing on specificity
revealed all effects to be significant. As for sensitiv-
ity, all effects involving the learning algorithm were
below 0.01. The respective ANOVA results are sum-
marized in Table S2 (Supporting Information).
Means and 95% CIs regarding the main effects of the
design factors stopping rule, learning algorithm, and
prevalence ratio are presented in Table A1
(Appendix A). Means and 95% CIs regarding the
interaction between the stopping rule and learning
algorithm are summarized in Table S4 (Supporting
Information). The main effect of the stopping
rule was substantial (F 1:74,146384:54ð Þ¼ 1503:49,
p<0:001, η2 ¼ 0:302), with the knee method (M= 76.40,
95% CI [76.35, 76.46]) demonstrating a slight advantage
over the heuristic stopping rule (M= 76.08, 95% CI
[76.05, 76.12]). Conversely, the prevalence estimation
stopping rule (M= 41.69, 95% CI [41.61, 41.78]) exhibited
poorer performance than the other two methods
(see Figure 2a). The main effect of the prevalence
ratio on specificity was small (F 3,83976ð Þ¼ 2529:87,
p<0:001, η2 ¼ 0:010). As for sensitivity, higher preva-
lence ratios were associated with slightly improved
specificity values (see Figure 2b). Examining the inter-
action between the prevalence ratio and stopping rule
revealed that the knee method's performance improved
with increasing prevalence ratios, whereas the heuris-
tic stopping rule's performance declined as prevalence
ratios increased (see Table A2, Appendix A). In con-
trast, the prevalence estimation method maintained
consistent performance across all conditions (see
Figure 2c).

4.2.3 | Cost

The mixed-effects ANOVA for the screening cost, con-
ducted with a design of 9 (learning algorithms) � 4 (prev-
alence ratios) � 3 (stopping rules) � 21 (OACs), also
revealed significant effects (see Table S3, Supporting
Information). The bootstrapped means and 95% CIs
regarding the main effects of the design factors stopping
rule, prevalence ratio, and learning algorithm are sum-
marized in Table A1 (Appendix A). As with the other two
performance measures, all effects associated with the
learning algorithm were negligible (η2 < 0:01). In con-
trast, the stopping rule exhibited a substantial effect
(F 1:75,146778:73ð Þ¼ 229568:29, p<0:001,η2 ¼ 0:299), with
the heuristic stopping rule (M= 22.76, 95% CI [22.73,
22.80]) performing slightly better than the knee method
(M= 22.99, 95% CI [22.94, 23.04]), and both outperform-
ing the prevalence estimation (M= 56.10, 95% CI [56.01,
56.17]). On average, the prevalence estimation required
more than twice as many abstracts to screen compared to
the other methods (see Figure 2a).

The main effect of the prevalence ratio on screening
cost was small F 3,83976ð Þ¼ 3554:08, p<0:001,η2 ¼ 0:014.
Higher prevalence ratios were associated with slightly
lower screening costs. However, this effect was inconsis-
tent across all conditions (see Figure 2b). Furthermore,
we observed an interaction between the prevalence ratio
and stopping rule (F 5:24,146778:73ð Þ¼ 13493:17,
p<0:001,η2 ¼ 0:070). While the effect of the prevalence
estimation remained consistent across different preva-
lence ratios, the knee method's performance improved
with increasing prevalence ratios. The performance of
the heuristic stopping rule decreased as the prevalence of
relevant abstracts increased (see Figure 2c). The respec-
tive means and CIs are presented in Table A2
(Appendix A).

4.3 | Secondary analyses

Beyond the experimental design factors, the control fac-
tor OAC exhibited a small-sized main effect for sensitivity
(η2 ¼ 0:046), a medium-sized effect for specificity
(η2 ¼ 0:089), and screening cost (η2 ¼ 0:089; see
Figure B2, Appendix B). All means and 95% CIs for the
main effect of OAC are presented in Table S5
(Supporting Information) and visualized in Figure B2
(Appendix B). Moreover, the interaction between abstract
collection and stopping rule resulted in the largest
observed effect on sensitivity (η2 ¼ 0:088) and consider-
able effects on specificity (η2 ¼ 0:046) and cost
(η2 ¼ 0:045). As displayed in Figure B2 (Appendix B), the
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performance of all three stopping rules varied across
abstract collections. All means and 95% CIs regarding
this interaction are presented in Table S6 (Supporting
Information). We further explored this interaction by
visually inspecting how the stopping rules performed for
groups of abstract collections with diverging numbers of
relevant abstracts. As shown in Figure B3 (Appendix B),
the knee method performed poorly in terms of sensitivity
for abstract collections with more than 200 relevant
abstracts, while both the prevalence estimation and the
heuristic stopping rule performed well for these abstract
collections. For specificity and cost, this pattern reversed
(see Figure B3, Appendix B).

As the data for each condition did not appear to fol-
low a normal distribution, we calculated the 25, 50, and
75% quantiles for each combination of the design factors.
In Table 2, we compiled a summary highlighting the top-
performing combinations based on these statistics. A
comprehensive list, including the performance of all
combinations and additional statistics, is accessible
within our repository (https://osf.io/7yhrq). When focus-
ing solely on sensitivity, the prevalence estimation paired
with the LR + SBERT learning algorithm outperformed
the other combinations for the 0.5, 1, and 5% ratio condi-
tions but not for the 10% ratio condition, where the com-
bination of the data-driven heuristic and the LR
+ SBERT learning algorithm performed best. It is impor-
tant to highlight that, for the prevalence estimation, all
learning algorithms demonstrated similar sensitivity
levels while displaying variations in terms of specificity
and screening cost. However, as displayed in the quan-
tiles and minimum values in Table 2, the prevalence esti-
mation was associated with a high risk of over-sampling
and undersampling, resulting in greater sensitivity, speci-
ficity, and screening cost variance. While the knee
method also carries this risk, it was much less
pronounced.

Furthermore, the prevalence estimation stopping
rule consistently results in the highest screening cost.
Thus, when considering all quality measures, we identi-
fied different top performers. The knee method paired
with the LR + doc2vec learning algorithm outper-
formed the other stopping rules for the 0.5 and 1% ratio
conditions. Note that while the LR + doc2vec learning
algorithm achieved approximately 10% higher sensitivity
values across all prevalence conditions compared to
when combined with the other algorithms, it also
required screening considerably more abstracts. How-
ever, for the 5 and 10% ratio conditions, the data-driven
heuristic paired with the LR + SBERT learning algo-
rithm outperformed the other stopping rule and learn-
ing algorithm combinations.

5 | DISCUSSION

In this study, we assessed the performance of three stop-
ping rules employed in AI-AS tools for concluding the
abstract screening process. These stopping rules com-
prised the data-driven heuristic,24 a prevalence estima-
tion method,6 and the knee method,22 each utilizing
distinct techniques to determine when to halt the screen-
ing process. Our evaluation was conducted using abstract
collections obtained from five distinct research domains
within the field of psychology: Applied Psychology, Clini-
cal Psychology, Developmental Psychology, Educational
Psychology, and Social Psychology. We systematically
manipulated the prevalence of relevant abstracts for each
domain, representing prevalence ratios of 0.5, 1, 5, and
10%. With this extensive dataset, we proceeded to simu-
late the practical utility of stopping rules. Employing nine
different learning algorithms, we conducted nine simula-
tions for each manipulated abstract collection within the
AI-AS tool ASReview.19 Subsequently, we applied
the stopping rules in each simulation run. To evaluate
performance, we considered sensitivity (the proportion of
relevant abstracts among all screened abstracts), specific-
ity (the proportion of irrelevant articles among all
unscreened articles), and screening cost (the proportion
of articles screened until the stopping rule criteria
were met).

5.1 | Performance results

The results of our analysis revealed notable performance
differences between the three stopping rules
(i.e., prevalence estimation, knee method, and data-
driven heuristic). On average, the stopping rule that
relied on a prevalence estimate6 performed best in terms
of sensitivity. However, this stopping rule was associated
with significantly increased screening costs and reduced
specificity compared to the knee method22 and the
data-driven heuristic.24 Furthermore, the prevalence esti-
mation carries the risk of both over-sampling and under-
sampling.53 Regarding the prevalence of relevant
abstracts, we observed a moderately strong main effect,
indicating that higher prevalence ratios were linked to
higher sensitivity and lower specificity and screening
cost. However, we also observed a moderately strong
interaction between the prevalence ratio and the stopping
rule, suggesting that meta-analysts should estimate the
prevalence of relevant literature and customize their
stopping rules accordingly (see Figure 3). The effect of
the learning algorithm and all interactions involving
the learning algorithm appeared negligible at first glance.
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TABLE 2 Descriptives of the top-performing stopping rule � learning algorithm combination.

Prevalence ratio Stopping rule Learning algorithm Min. Max. Median Q25% Q75% IQR

Sensitivity

0.5% HM LR + SBERT 7.14 100.00 62.50 42.86 88.88 46.03

KM LR + doc2vec 5.00 100.00 91.67 66.67 100.00 33.33

PE LR + SBERT 5.00 100.00 100.00 50.00 100.00 50.00

1% HM LR + SBERT 3.90 100.00 66.67 37.50 88.26 50.74

KM LR + doc2vec 2.46 100.00 84.09 59.70 95.00 35.30

PE LR + SBERT 3.90 100.00 89.41 56.00 100.00 44.00

5% HM LR + SBERT 1.18 100.00 93.88 85.46 97.37 11.91

KM LR + doc2vec 0.58 100.00 77.18 55.69 89.09 33.41

PE LR + SBERT 4.17 100.00 94.76 77.55 100.00 22.45

10% HM LR + SBERT 1.49 100.00 96.00 91.53 98.63 7.11

KM LR + doc2vec 0.38 100.00 80.00 60.57 90.32 29.75

PE LR + TFIDF 4.62 100.00 95.03 80.93 100.00 19.07

Specificity

0.5% HM LR + SBERT 0.13 97.50 88.04 80.74 91.86 11.12

KM LR + doc2vec 0.00 99.94 60.49 24.30 83.99 59.69

PE LR + SBERT 0.00 89.99 58.45 0.00 81.38 81.38

1% HM LR + SBERT 16.35 97.48 87.88 81.09 91.49 10.40

KM LR + doc2vec 0.03 99.90 73.42 51.50 89.52 38.02

PE LR + SBERT 0.00 89.93 61.95 0.00 82.41 82.41

5% HM LR + SBERT 15.27 97.10 75.49 67.39 85.22 17.83

KM LR + doc2vec 0.11 99.91 84.39 75.29 92.82 17.53

PE LR + SBERT 0.00 89.61 59.07 0.00 78.68 78.68

10% HM LR + SBERT 10.55 96.99 69.68 60.35 81.67 21.32

KM LR + doc2vec 19.49 99.89 83.12 75.14 90.99 15.84

PE LR + TFIDF 8.64 97.19 69.56 61.06 80.06 19.00

Cost

0.5% HM LR + SBERT 2.49 99.50 11.90 8.10 19.16 11.06

KM LR + doc2vec 0.06 99.63 39.32 15.94 75.36 59.42

PE LR + SBERT 9.96 99.63 41.36 18.54 99.53 80.99

1% HM LR + SBERT 2.50 82.91 12.01 8.43 18.73 10.30

KM LR + doc2vec 0.10 99.12 26.33 10.38 48.06 37.68

PE LR + SBERT 9.98 99.12 37.70 17.42 99.04 81.61

5% HM LR + SBERT 2.77 80.71 23.36 14.09 31.07 16.98

KM LR + doc2vec 0.08 95.33 14.87 6.84 23.54 16.70

PE LR + SBERT 9.90 95.33 39.00 20.32 95.27 74.94

10% HM LR + SBERT 2.74 81.33 27.56 16.68 36.06 19.38

KM LR + doc2vec 0.10 73.25 15.36 8.20 22.61 14.41

PE LR + TFIDF 9.53 91.06 40.13 21.15 90.95 69.80

Note: The order is based on best median sensitivity. In case of equal median performance, the order is based on the 25% quantile. Each statistic comprises
21,000 data points.
Abbreviations: IQR, interquartile range; Q, quantile.

KÖNIG ET AL. 1135

 17592887, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jrsm

.1762 by H
elm

ut-Schm
idt-U

niversitat der B
undesw

ehr H
am

burg, W
iley O

nline L
ibrary on [12/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Nevertheless, a closer examination of the data revealed
combinations of stopping rules and learning algorithms
that outperformed others. For instance, in the 0.5% prev-
alence ratio condition, the knee method paired with the
LR + doc2vec learning algorithm achieved a median sen-
sitivity of 92%, while the second-best combination of this
method with the LR + SBERT learning algorithm
achieved a median sensitivity of 85% but also halved the
screening cost. It is worth noting that, to the best of our
knowledge, only ASReview incorporates all the learning
algorithms utilized in this study. Nonetheless, several AI-

AS tools incorporate some of the learning algorithms
used in this study (for an overview of AI-AS tools, see
Reference 15). Besides these findings, we also advocate
for considering several performance measures when
selecting stopping rules and learning algorithms. While
the prevalence estimation constantly achieved similar
sensitivity across learning algorithms, we observed that
combining this method with the LR + SBERT learning
algorithm resulted in a lower screening cost. Furthermore,
in the 1% prevalence ratio condition, the prevalence esti-
mation was the only stopping rule that achieved a median

5. AI-Aided Screening
Select a balancing and

query strategy.

Select the chosen model

(learning algorithm)

Utilize randomly screened

abstracts as training set

Start AI-aided screening

and stop according to

stopping rules

Prevalence Ratio of 0.5% 

1. LR+doc2vec

Se Sp Co
KM 92% 60% 39%

HM 52% 85% 15%

PE 100% 50% 50%

2. LR+SBERT

Se Sp Co
KM 85% 79% 21%

HM 63% 88% 12%

PE 100% 58% 42%

Prevalence Ratio of 1%

1. LR+doc2vec

Se Sp Co
KM 84% 73% 26%

HM 50% 85% 15%

PE 89% 58% 42%

2. LR+SBERT

Se Sp Co
KM 73% 88% 12%

HM 67% 88% 12%

PE 89% 62% 38%

Prevalence Ratio of 5%

1. LR+SBERT

Se Sp Co
KM 68% 92% 8%

HM 94% 75% 23%

PE 95% 59% 39%

2. LR+doc2vec

Se Sp Co
KM 77% 84% 15%

HM 92% 74% 25%

PE 95% 56% 42%

Prevalence Ratio of 10%

1. LR+SBERT

Se Sp Co
KM 73% 90% 9%

HM 96% 70% 28%

PE 95% 59% 38%

2. LR+doc2vec

Se Sp Co
KM 80% 83% 15%

HM 95% 68% 29%

PE 95% 56% 40%

2. Random Screening*

Screen a random subset

(e.g. 1%) until at least one

relevant abstract is

identified

Store the screening

decisions to use the

screened abstracts as

training set in Step 5

1. Data Preparation
Perform literature search

Deduplicate search results

Control format and

completeness

6. Switching Model*

Switch model (learning

algorithm) 

Use screened data as the

training set

Continue screening

Stop according to stopping

rules

7. Control Quality*

Screen excluded literature

to control for

misclassification

Stop according to stopping

rules

3. Prevalence Estimation 
Estimate prevalence of

relevant abstracts based on

the random subset (Step 2)

Alternatively, select an

estimation technique for

estimating prevalence while

screening

4. Model (Learning Algorithm) and Stopping Rule Selection
Choose model and stopping rules according to the estimated prevalence

FIGURE 3 Flowchart pertaining nine steps of AI-aided screening with ASReview. Performance estimates reflect median performance.

Literature suggestions for each step are provided within this work. * = Adapted from the SAFE method proposed by Boetje and van de

Schoot.40 Se = Sensitivity, Sp = Specificity, Co = Cost, KM = Knee Method with rho equals 6,22 HM = Data-driven Heuristic with 2.5%

consecutive irrelevant abstracts,11 PE = Prevalence Estimate based on a random sample of 10%.6
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sensitivity of around 90%. However, when paired with the
LR + doc2vec learning algorithm, the knee method
offered a competitive alternative with a median sensitivity
of around 84%, exhibiting less variance in sensitivity esti-
mates and a lower screening cost. Similarly, when evaluat-
ing all performance measures, the combination of the
data-driven heuristic with the LR + SBERT learning algo-
rithm outperformed both methods in the 5 and 10% preva-
lence conditions. In both conditions, this combination
achieved a median sensitivity above 93%.

In addition to these findings, our data incorporates
several noteworthy observations, particularly compared
to previous research in the field. For instance, the rela-
tively minor influence of the learning algorithm found in
our study contradicted recent findings.26 One possible
explanation for these differing results could be disparities
in study design. Campos et al. conducted their simula-
tions using the same abstracts to train the algorithms,
while we replicated all simulation runs using different
abstracts for training. As Teijema et al.16 have demon-
strated that the screening order of abstracts can vary
among different learning algorithms, we posit that this
variation could impact the performance of stopping rules
reliant on the screening order. Consequently, when aver-
aging across simulation runs with different screening
orders, the effect of the learning algorithm may have
been diminished or averaged out.

Furthermore, a previous study found that configuring
the data-driven heuristic to halt after encountering 7%
consecutive irrelevant abstracts resulted in sensitivity
exceeding 95% across abstract collections with different
prevalence ratios.26 However, this modification also led
to screening of approximately 70% of the abstracts. Our
results suggest that comparable sensitivity can be
achieved with reduced screening costs when the stopping
rules are tailored to the prevalence of relevant abstracts.
In the 10% prevalence ratio condition, for example, stop-
ping the screening process after encountering 2.5% con-
secutive irrelevant records resulted in a median
sensitivity of 95% with a screening cost below 30% when
the LR + SBERT algorithm was employed. Additionally,
we noticed that the knee method outperformed the data-
driven heuristic for specific abstract collections and vice
versa. This suggests that combining both stopping rules
may potentially enhance overall sensitivity, which aligns
with the findings of Campos et al.,26 who observed that
combining the data-driven heuristic with the time-based
heuristic can reduce screening costs. However, based on
our results, we believe that the selection of stopping rule
combinations should also consider the prevalence ratio
and learning algorithm to further improve sensitivity and
reduce screening cost. Finally, upon closer examination,
we identified interactions between the performance of
the stopping rules and the number of relevant studies

within an abstract collection (see Figure 2). The preva-
lence estimation procedure and the heuristic stopping
rule demonstrated superior performance for collections
with many relevant abstracts, while the knee method's
performance notably declined in such collections. Nota-
bly, our manipulation design did not allow for a clear dif-
ferentiation between the number of relevant abstracts
and the size of the abstract collection; both factors could
have contributed to this finding. Nevertheless, comparing
the variation in sample size and the number of relevant
studies between conditions revealed much more variation
in the number of relevant studies than in the sample
sizes. However, the lower performance of the knee
method for high prevalence ratio conditions and abstract
collections with many relevant abstracts is particularly
intriguing. This finding contrasts with the recommenda-
tion of Cormack and Grossman,22 who suggested using
the same cut-off value we employed for abstract collec-
tions with a high prevalence of relevant abstracts. Fur-
thermore, they proposed adjusting the cut-off upward for
abstract collections with low prevalence. Our findings
suggest the opposite. Differences in the type and number
of text documents could be one potential explanation for
these inconsistent results. The highest number of
abstracts in our psychological-related abstract collections
reached 12,432, while the smallest text collections in Cor-
mack and Grossman22 included three times as many text
documents.

5.2 | Limitations and future research
directions

Our study has several limitations. First, while this study
may be among the first to evaluate the performance of
various stopping rules separate for different performance
ratios, the range of prevalence ratios was not exhaustive.
Future investigations could explore, for example, whether
there are ceiling effects by considering prevalence ratios
above 10%.

Second, our study implies that the characteristics of the
abstract collection, such as sample size or the number of
relevant studies, influences the performance of the stop-
ping rules. To gain a deeper understanding of the perfor-
mance variations among different abstract collections and
stopping rules, researchers could consider manipulating
the sample size of the abstract collections along with the
prevalence ratio. However, human error could be an alter-
native explanation for the discrepancies in the performance
of stopping rules across abstract collections. Given that
humans typically misclassify between 5 and 10% of rele-
vant abstracts, the established baseline of relevant abstracts
in the collected collections might not be entirely accurate.
Consequently, the performance of the learning algorithms
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could have been affected, which in turn could have
impacted the performance of the stopping rules.

Third, we mitigated any potential impact of the
abstracts used to train the learning algorithm by averaging
it out. We also trained the learning algorithms with only
one relevant and one irrelevant abstract. Future research
should investigate whether specific procedures to select
training studies, such as sampling 1% at random40 or the
sheer number of training studies, impact the performance
of the stopping rules and learning algorithms.

Fourth, the screening cost and specificity associated
with the prevalence estimation technique may differ in
a real-world scenario. We calculated the prevalence
estimate after simulating the AI-AS. Consequently, the
randomly screened abstracts were not used as training
studies, which would likely have resulted in higher
specificity and lower screening costs. However, this
design decision did not impact sensitivity. Whereas this
design decision was not optimal, it effectively reduced
the computation time of our simulation by 50%, allow-
ing us to evaluate the performance of all stopping rules
on the same simulated datasets. Future research could
investigate the cost and specificity of the prevalence
estimation procedure of van Haastrecht et al.6 when
using the randomly screened abstracts as training
studies.

Fifth, to keep our simulation within a manageable
computation time, we defined that the ranking of unseen
abstracts was recalculated after every 10 screened
abstracts—this setup could have had a minor influence
on the performance of the stopping rules. Moreover, our
results are contingent on the default balancing and query
strategy settings of ASReview.19 Other balancing and
query strategies are likely to impact the performance of
the stopping rules. Future research could investigate the
impact of these design decisions.

Sixth, the three here tested stopping rules are not
exhaustive. Each can be implemented differently by alter-
ing cut-off values. Other stopping rules, implementation,
or combinations might improve sensitivity while lowering
cost. We strongly encourage future investigations to delve
deeper into identifying implementations and combinations
of stopping rules in accordance with specific prevalences
of relevant literature. Such research endeavors can pave
the way for identifying the most efficient and dependable
stopping rules tailored to the abstract collection's charac-
teristics and research objectives.

Finally, machine learning algorithms are susceptible
to various biases (see Reference 89). Whereas some biases
do not apply to AI-AS, others are applicable when using
AI-AS tools8 but are precluded by our simulation
design—such as representation bias, which occurs when
the order of abstracts is biased due to nonrandom train-
ing studies. Still, other biases might be relevant. The

behavioral bias, for instance, could apply, given that dif-
ferent researchers screened the abstract collections,
potentially with varying degrees of freedom. Similarly,
user interaction bias might occur if the data contain mis-
classified abstracts. Furthermore, we cannot generalize
our results to other research areas, thus, making our
design susceptible to population bias for machine learn-
ing algorithms (see Reference 89).

5.3 | Conclusions and practical
recommendations

Taken together, our study provides valuable insights into
the performance of three distinct stopping rules for AI-
assisted abstract screening: the prevalence estimation by
van Haastrecht,49 the knee method,22 and the data-driven
heuristic.24 Additionally, our novel approach to manipu-
lating the prevalence of relevant abstracts underscores
the importance of considering prevalence when selecting
stopping rules and learning algorithms. Integrating our
findings with previous research, we recommend a seven-
step process for conducting research synthesis with AI-
AS tools (see Figure 3).

Step 1 involves conducting a literature search and
preparing the data. Thereby, state-of-the-art tools, such
as Paperfetcher10 and Citationchase,9 which automate
the backward and forward search to prevent missing rele-
vant articles, could be used to identify additional relevant
literature. The search results should then be downloaded,
combined, deduplicated, and stored in a format compati-
ble with the AI-AS tool.8 In Step 2, following the sugges-
tions of Boetje and van de Schoot40 and van Haastrecht
et al.,6 we recommend randomly screening a predefined
percentage of the abstracts until at least one relevant
abstract is identified. The abstracts of this randomly
screened subset can be used to train the learning algo-
rithm in the AI-AS phase, preventing bias due to the sim-
ilarity of abstracts from studies already known to be
relevant before conducting the literature search (see
Boetje and van de Schoot,40 for additional information).
In Step 3, we recommend using the randomly screened
abstracts to estimate the prevalence, as described in
Equation 1, which is adapted from van Haastrecht et al.6

Alternatively, in this step users could select another prev-
alence estimation technique that estimates prevalence
while screening, such as the one provided in the AI-AS
tool SWIFT-Active Screener.23

In Step 4, an appropriate combination of the learning
algorithm and stopping rule should be selected according
to the estimated prevalence. Our results, summarized in
Figure 3, reflect the best combinations of learning algo-
rithms and stopping rules for different prevalence ratios.
In addition, we recommend the following: Users should
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avoid relying solely on the prevalence estimation tech-
nique to mitigate the risk of oversampling. Instead, com-
bine the knee method and the data-driven heuristic,
prioritizing the knee method for prevalence ratios of 1%
or lower and the data-driven heuristic for prevalence
ratios of 5–10%. To implement the knee method in R,
users can adapt the code presented in our repository
(https://osf.io/7yhrq). For an implementation in Python,
users can use the code provided by van Haastrecht.49

Additionally, users might want to incorporate other stop-
ping rules, such as identifying key studies (see Boetje and
van de Schoot,40 for additional information) or using the
time-based heuristic (11; see also Reference 26). For
the latter, an appropriate cut-off value could be reflected
by the screening cost of the prevalence estimation
method reported in Figure 3 (see our OSF repository at
https://osf.io/7yhrq for information on the performance
of additional learning algorithms).

In Step 5, we outline how to set up the AI-AS when
using ASReview.19 For instance, a query and balancing
strategy needs to be selected (see Supporting Informa-
tion). As most evaluation studies and our results are
based on the default strategies in ASReview (see Refer-
ence 36), we recommend users adhere to this setting
when using this tool. Furthermore, while we selected
only one relevant and one irrelevant abstract to simulate
AI-AS, users might want to use the abstracts screened in
Step 2 to train the algorithm. While we cannot rule out
that this difference in training data impacts the perfor-
mance of stopping rules, results from Oude Wolcherink
et al.56 suggested that the median performance of the
data-driven heuristic remains similar or increases with
more training studies. However, after the setup, the AI-
AS can be started and stopped after the predefined stop-
ping rules are met.

To enhance the quality of the AI-AS, users might
also want to consider integrating two additional screen-
ing phases, following the suggestions of Boetje and van
de Schoot40 (i.e., Steps 6 and 7 in Figure 3). In Step
6, users should continue their AI-AS employing a dif-
ferent learning algorithm to identify additional relevant
articles (see Reference 16). In this phase, all previously
labeled abstracts serve as the training set, and screen-
ing can be concluded after identifying 50 consecutive
irrelevant abstracts. In Step 7, all previously labeled
irrelevant abstracts should be rescreened to control for
misclassification. In this phase, the authors recom-
mend using all previously labeled relevant abstracts
and one randomly chosen irrelevant abstract to train
the algorithm. Screening can be stopped after 50 consec-
utive irrelevant abstracts. However, we did not examine
the impact of Steps 6 and 7. Therefore, we cannot con-
clude that these methods will increase sensitivity in
our data.

Finally, we strongly encourage users of AI-AS tools to
adhere to reporting standards.42,43 We hope our findings
will aid researchers in enhancing and simplifying their
AI-AS procedures in the future, ultimately catalyzing sci-
entific progress and knowledge gain.
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APPENDIX A

TABLE A1 Means and CIs pertaining the main effects of the design factors.

Main effects Groups Sensitivity Specificity Cost

Stopping rule Knee method 65.71 [65.64, 65.78] 76.40 [76.35, 76.46] 22.99 [22.94, 23.04]

Heuristic method 72.27 [72.21, 72.32] 76.08 [76.05, 76.12] 22.76 [22.73, 22.80]

Prevalence estimation 81.87 [81.82, 81.93] 41.69 [41.61, 41.78] 56.10 [56.01, 56.17]

Prevalence ratio 0.5% 68.77 [68.69, 68.85] 60.91 [60.81, 61.01] 38.92 [38.83, 39.02]

1% 65.40 [65.32, 65.48] 67.24 [67.16, 67.32] 32.45 [32.37, 32.53]

5% 77.21 [77.15, 77.28] 66.63 [66.56, 66.71] 31.79 [31.72, 31.87]

10% 81.75 [81.69, 81.81] 64.13 [64.06, 64.20] 32.63 [32.57, 32.70]

Learning algorithm LR + doc2vec 74.94 [74.83, 75.05] 62.61 [62.48, 62.72] 36.01 [35.89, 36.12]

LR + SBERT 74.70 [74.60, 74.81] 66.94 [66.82, 67.06] 31.81 [31.69, 31.93]

LR + TFIDF 73.04 [72.93, 73.15] 66.41 [66.29, 66.53] 32.32 [32.19, 32.44]

NB + TFIDF 72.82 [72.72, 72.93] 66.90 [66.77, 67.02] 31.82 [31.70, 31.95]

nn2layer + doc2vec 73.04 [72.93, 73.15] 62.64 [62.51, 62.76] 35.98 [35.86, 36.10]

nn2layer + SBERT 72.03 [71.92, 72.14] 66.08 [65.96, 66.21] 32.66 [32.54, 32.77]

RF + doc2vec 73.34 [73.24, 73.44] 63.50 [63.38, 63.62] 35.16 [35.03, 35.29]

RF + TFIDF 71.35 [71.24, 71.45] 62.64 [62.51, 62.76] 35.94 [35.82, 36.07]

SVM + TFIDF 74.28 [74.18, 74.39] 64.83 [64.70, 64.96] 33.84 [33.70, 33.96]

Note: Means and 95% CIs for all groups within the manipulated design factors stopping rule, learning algorithm, and prevalence ratio separate for sensitivity,

specificity, and screening cost. All means and CIs are bootstrapped based on 1000 iterations. The design factors stopping rule, prevalence ratio, and learning
algorithm comprise 756,000; 567,000; and 252,000 data points, respectively.

TABLE A2 Means and CIs pertaining the interaction of stopping rule and prevalence ratio.

Prevalence ratio Stopping rule Sensitivity Specificity Cost

0.5% KM 71.75 [71.63, 71.88] 60.77 [60.62, 60.92] 39.07 [38.92, 39.23]

HM 57.87 [57.75, 57.99] 81.12 [81.04, 81.19] 18.80 [18.73, 18.88]

PE 76.69 [76.55, 76.81] 40.84 [40.66, 40.99] 58.90 [58.73, 59.06]

1% KM 63.35 [63.20, 63.50] 73.97 [73.85, 74.09] 25.79 [25.67, 25.90]

HM 56.71 [56.59, 56.83] 84.98 [84.95, 85.02] 14.87 [14.84, 14.91]

PE 76.14 [76.01, 76.27] 42.77 [42.59, 42.94] 56.69 [56.51, 56.86]

5% KM 60.91 [60.78, 61.03] 85.94 [85.88, 86.00] 13.40 [13.34, 13.46]

HM 84.42 [84.34, 84.50] 72.20 [72.14, 72.27] 26.48 [26.42, 26.54]

PE 86.31 [86.24, 86.39] 41.75 [41.60, 41.91] 55.50 [55.34, 55.66]

10% KM 66.83 [66.72, 66.95] 84.94 [84.88, 84.99] 13.70 [13.66, 13.75]

HM 90.06 [90.00, 90.13] 66.03 [65.96, 66.11] 30.89 [30.82, 30.97]

PE 88.35 [88.29, 88.42] 41.41 [41.25, 41.58] 53.29 [53.15, 53.44]

Note: Means and 95% CIs regarding the interaction of Stopping rule and Prevalence ratio separate for sensitivity, cost, and specificity. All means and CIs are
bootstrapped based on 1000 iterations. Each group consists of 189,000 observations. KM = Knee method, HM = heuristic stopping rule, PE = prevalence
estimation.
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APPENDIX B

FIGURE B1 Gain curve of a learning algorithm in AI-aided

screening. The x-axis shows the percentage of screened abstracts.

The y-axis shows the percentage of identified relevant abstracts.

The dashed diagonal line represents the gain curve with random

screening. The solid line shows a potential gain curve when active

learning is applied. The points on the solid line represent potential

knees, with the red point indicating the knee. The figure is adapted

from Cormack and Grossman.22
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FIGURE B2 Bar-plot pertaining to the main effect of OAC and interaction of Stopping rule and OAC. The main effect of OAC (a) and

the interaction of Stopping rule and OAC (b). As the CIs were too small to be visible, we did not include them in the figure. The OACs 1 to

21 are received from Alden et al.,66 Bottema-Beutel et al.,60 Bourke et al.,71 Castro-Alonso et al.,70 Dailey and Bergelson,76 Endendijk et al.,75

Estevez Cores et al.,73 Hall et al.,63 Hsieh et al.,65 Karabinski et al.,72 Khazanov et al.,61 Leijten et al.,78 Liu et al.,67 Ober et al.,69 Reimer and

Sengupta,62 Schindler et al.,74 Simonsmeier et al.,64 Tang et al.,68 Vermillet et al.,59 Woods et al.,77 and Zaneva et al.,79 respectively.
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FIGURE B3 Violin-plot

pertaining to the interaction of

stopping rule and prevalence

ratio. Violin density plots

pertaining to the interaction of

Stopping rule and Prevalence

ratio. Each dot represents a

combination of learning

algorithm and OAC and is the

average of 21,000 data points.

The colors represent groups

matched by the number of

relevant abstracts. KM = Knee

method, HM = Heuristic

method, PE = Prevalence

estimation.
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